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Analytical model of propagating sand ripples
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We formulate a simple phenomenological model of aeolian sand ripple migration based upon a balance
between grain hopping driven by saltation and grain rolling or avalanching under gravity. We develop a set of
model equations governing the evolution of the ripple slope. The model has solutions describing steadily
propagating isolated ripples, produced by a horizontal saltation flux, and periodic trains of ripples, which
develop when the saltation flux is inclined to the horizontal. In the case of an inclined saltation flux, the ripple
wavelength is controlled by the length of the shadow zone, as suggested by R. P[BHagwl.71, 617
(1963)]. Although very simple, our model predicts some of the qualitative features shown by sand ripples in
experimental or field studid®k. A. Bagnold,The Physics of Blown Sand and Desert Dudsthuen and Co.,
London, 194); R. P. Sharp, J. Geoll1, 617 (1963]. We find that ripples only develop above a certain
threshold value of the saltation flux intensity. Furthermore, at relatively low saltation fluxes, the lee slope of the
ripple is a smooth curve, whereas above a critical value of the saltation flux, a slip face develops near the crest.
The model predicts a decrease in the speed of propagation as the ripple becomes larger, consistent with
observations that smaller ripples are eliminated by ripple mdigeP. Sharp, J. Geol1, 617 (1963], and
also with numerical simulation$R. S. Anderson, Earth-Sci. Re29, 77 (1990; S. B. Forrest and P. K. Haff,
Science255 1240(1992; W. Landry and B. T. Werner, Physica T¥, 238(1994].
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I. INTRODUCTION sand ripples based upon the concept of energetic saltating

grains impacting the ripple and causing displacement of the

As the wind blows across a loosely packed sand bed, thgrains in the ripple. The displaced grains then hop up the
sand tends to be organised into propagating waves known &toss(windward slope of the ripple, and it is this that causes

aeolian sand ripples. These ripples, which occur both in théhe ripple to propagate. The saltating grains are assumed to

desert and at the seashore, are small, with a wavelength of€ entrained from the sand bed upwind and to be sufficiently

few centimetres, and with heights roughly one-fifteenth orénergetic that they continue downwind of the ripple. This

one-twentieth of their wavelength. Their crests lie perpen_saltation process is illustrated in Fig. 1, which also shows a

dicular to the direction of the wind. typical aeolian sand ripple and explains the terminology used
Bagnold[1] presented a model of the formation of aeolian t© "€fer to different parts of the ripple. Bagnold's early work
on sand ripple formation has been developed and modified
by subsequent workers, e.g., Anderg@r8], and compared

rebounding saltating
grain

wind
. FIG. 1. A schematic diagram
ripple crest
' ) _ hopping grains to shpw the stoss and lee slopes,
incoming saltating the ripple crest, and the shadow
grain lee slope

zone. The saltating particles travel
in the direction of the wind and
impact the bed at an angte The
impacting grain rebounds, and
knocks several other grains out of
the bed, causing them to hop
along the surface.

stoss slope

shadow zone
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with field observations, for example, Shdrg, and numeri- ripples. Anderson and Bun&s5] investigated the effects of
cal experiments, for example, Anders8], Nishimori and  different grain sizes numerically using a cellular automata
Ouchi[5], and Landry and Wernd6]. approach. They found that the differential motion of small
Much recent analytical and experimental work has fo-and large grains can lead to reverse grading in the ripples.
cused on the microscopic details of grain migration along the The purpose of the present contribution is to develop a
ripple. The hopping of the displaced grains has been studieti@mework within which analytical models of the macro-
by Ungar & Haff [7], Mitha et al. [8] and Andersor{2]. ~ Scopic motion of sand ripples may be developed, following
Anderson[2] used this information to produce a theoretical the work of Andersori2]. The current work is an extension
model of the initial generation of ripples from a flat bed. TheOf Hoyle [16]. We develo.p some simple phenomgnolog|9al
deposition of sand grains on the lee slope of sand duneQ?OdEIS of saltation, hopping, rolling, and avalanching, which

which leads to oversteepening and avalanching, was studi count for the observations described above, and consider
by Hunter[9] and Andersori10]. This work suggests con- ow a combination of these processes might determine ripple
straints on the ripple slope. shape and migration. We derive a set of model equations

Both Bagnold[1] and Sharg4] made field observations governing the evolution of the ripple slope. The theory en-
of sand ripple motion and interaction. Shdd found that ables us to predict some qualitative changes in the structure

the stoss slope angle has a maximum inclination in the rang f the npples_ with slzé and strengf[h of the saltation flux.
8°-10°, which does not vary significantly with ripple size. irst we conS|der.a h_orlzontal _saltatmg flux, and present so-
This is in accord with the theoretical predictiphl] that the Iut!ons that descrllbe_lsolated rlpples. Next, we allow .the sal-
process of saltation becomes energetically inefficient if thdation flux to be mclmed to the hOF'ZO.”‘a" 'and pred|ct that
angle of impact exceeds 15°. Rumpel] predicted that it is this leads t_o the formation of a penodp train of npple;. We
impossible to maintain a constant population of saltatingShOW that in our model, as the_ intensity of the saltation in-
grains when the surface is tilted by more than 15° against th reases, the _Iee face Of. the rlpple steepens ?”‘?‘ eyentually
incoming sand flux. He suggested that the stoss face is bui evelops a §I_|p fac_:e. This prowde; e t_)e-
up by saltation until it is at an angle of 15° to the incoming tween subcritical rlpplgs cha.ractenzed_by a smooth, curving
flux, when saltation becomes subdued. This suggests that If?e slope, and supercritical ripples, which include a slip face
the saltation flux is at an angj@ to the horizontal, then the on the lee slope.

maximum steepening of the stoss face is 1. Bagnold

[1] observed that the lee slope never exceeds an initial angle
of about 34°. This is in accord with theoretical work showing
that the deposition of grains on the lee slope of sand dunes A. Hopping

leads to oversteepening and avalanchiid0. Avalanching Aeolian sand ripples are formed by the action of saltating

maintains the lee slope at an angle of around 32°-{22f . ; )
Isand grains on surface roughness. In saltation, grains are

near the ripple crest. Aeolian sand ripples show a similar . N
feature: Sharp4] observed that the lee slope of a sand rippIeWh'pped along the surface of the sand bed by the wind, im-

is composed of a short straight slope near the crest, incline
at an angle of about 30° to the horizontal, followed by a
longer and shallower, concave slope.

II. PROCESSES GOVERNING SAND RIPPLE
DEVELOPMENT

acting the bed at small angles to the surface, typically 10°—
6° [1], and with high speedof order <1 m/s, [15]). De-
spite the gusting of the wind, the impact angle appears to
: - : emain fairly constant. The saltating grains rebound at
Other field observations suggest that ripple wavelengtﬁSlightly higher angles, but still with high speed, and it is

tends to increase with time by ripple merddd, and that . .
: assumed for the purposes of this model that these grains are
longer waves are tallel3 4. Sharp argued that the ripple sufficiently energetic that they do not fall onto the ripple

wavelength is determined by the length of its shadow zone

that is, the region of the lee slope that is shielded from theégrface, but continue in saltation. The impacts lead to the

saltation flux by the ripple crest. He also suggested thatiection of sand grains from the bed. The e_jected grains,
larger ripples would move more slowly than small ones. Fur—Wh'Ch have much lower speeds than the saltating grains, hop

thermore, he conjectured that at low wind speeds, the sto o_ng”the surfa_ce of the rlpple; they are S"f"d to b? inrep-
slope would be much longer than the lee, but that increasin tion” [8]. Typically, th_e distance a reptating particle hops
wind speed should lead to a greater degree of symmetry. .much less than one ripple Wa"e'e'."@’ﬂ" anq recent mod- :

In recent numerical experiments, Andersi8], Forrest eling suggests Fherefore th{a\t reptating particles have an im-
and Haff[14], and Landry and Werng6] have investigated poréarrn roilri 'ﬂ riltpplc\e,vforrr;atlt?in.t ¢ attention to two-
the macroscopic motion of sand ripples by computer simula- or simplicity -we - restrict - our —attentio 0 0

tion, in which individual grains are followed as they interactd.ImenSIonal ripples whose surface remains of small inclina-

with each other. Some of the numerical results show similap?n’ no greater that?] 3t4tr’1 conys:gt Wt'th ok;servgt[dn;].
features to the observations described above. In particula’ra,‘.so’ we assume that the numbed(x,t), of sand grains

ripple: speed is found 1o vary inversely with height, so thaicJoCed Per unit time, per unit surface length, from the sur-
small ripples catch up with larger ones and merge into themace at a positio along the ripple, at imé, 1S proportiona
the flux of saltating grains perpendicular to the surface at

This is consistent with Sharp’s observation that smaller® ot
ripples are eliminated by merger. Nishimori and Ouhii that point:

use a similar technique to investigate both small and large N(x,t)=J sin(a+ B), 1)
scale features in three dimensions, and produce convincing

contour plots of simulated sand ripples and barchan dunesvherec« is the slope of the surfacg, is the angle of impact
They also find a threshold wind force for the development ofthat the saltation flux makes with the horizontal, aht a
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constant of proportionality. We assume that each sand grain gy ON )\

ejected from the surface hops a horizontal distamcevith 5 (b= _apJ ap(a) - (x,t)da=—apa — (X,0).

probability p(a), where ®)
* _ Noting that the angle of slope of the surface, may be
__P(ayda=1, (@ expressed as

Ah =tan *(dy/dx), 9
and define the mean hop lengihas a=tan (dy/Jx) €)

we may rewrite the definitiofl) in the form
a= L@ap(a)da. () N(x,t)=J sin(a+ 8)=J sinftan 1(dy/ox)+ B}

_ J{(gylax)cosB+sinB}
T [1+(aylax)?]M?

We shall assume that>0. Thus the net displacement of the (10

sand is in the direction of the saltating flux, in accordance
with observations. The probability distributigrfa) contains  we may combine this with Eq8) to obtain the equation
all the information about the transfer of momentum from the
saltating particles to the reptating particles. In practice, this ay 3%y [cosB—sinB(aylx)]
must be determined experimentally. For example, Ungar and ot ax2 [1+ (aylox)2]72 (13)
y

Haff [7] described the variation in hop lengths using a
“splash” function, and Mithaet al. [8] measured the distri- where | =JapE Equation(11) describes the leading-order
bution of hop lengths for a bed of steel ball bearings. In thecontribution to the evolution of the shape of the ripple from
present analysis, we therefore assume f{a is known. the hopping caused by the saltating particles in the absence

Then the net numbedn(x,t) of sand grains arriving be- of other processes. In the next section, we build upon this
tween positionsx and x+ 8x, in time &t, is the difference picture by including the rolling of the grains under gravity.
between the number hopping in and the number hopping out,

B. Rolling

6n(x,t):[ - fw p(a)[N(x,t)—N(x—a,t)]da} 5xét. We now incorporate the effect of rolling or avalanching
—o of the sand grains under the influence of gravity. Particles
(4)  tend to roll down a slope under the influence of gravity bal-
anced by friction[1]. This results in the smoothing of the
The changedy in the surface elevatiop(x,t) in time 6t, is  ripple profile. For a static sand pile, there is an angle of
given in terms of the change in the cross-sectional area of theurface slope, known as the angle of repose, which is the
ripple by maximum that the sand can support before avalanching oc-
curs. The angle of repose depends on the packing of the sand
OX3Y(X,t)=ayon(x,t), (5)  grains, and for dry sand, the angle of repose is about 30°
[17]. We assume that for traveling sand ripples, there is an
wherea,, is the average cross-sectional area occupied by angle y that is no greater than the angle of repose, and that
sand grain in the ripple. Combining the last two equationggives the maximum slope attainable during motion. We will
leads to an equation for the evolution of the surface elevaeall y the dynamic angle of repose. If the lee slope increases
tion, to the angley, then a slip face will develop, on which sand
avalanches rather than rolls down the lee slope. This picture
ay o is in accord with Bagnold'$1] observation that sand dunes
7 XO= —apfimp(a)[N(x,t)—N(x—a,t)]da. (6)  over a certain height have a slip face on the lee slope, and
also with Sharp’s observatidd] that, near the crest, the lee

. . . . .. slopes of sand ripples are straight and inclined roughly at the
We now introduce a number of approximations that S'mp"fyangle of repose.ppl'he slip facegis a region extendgingdown

the _analysis and that are generally valid for sand ripplesfrom the crest that is maintained at a constant slgpay
Typically, the hop length is short compared to a Wavelengtr}jl

) X valanching.
[1]’. SO We can expand the integrand in E6) as a Taylor As a simgple phenomenological model, we assume that for
series ina. We a!so assume th"?‘t the slope of the ripple, ancjs,lopes of angle less thanthe grains roll on the surface with
hence the gradienN(x,t), varies slowly, except at the speedu, which is a function of the gravitational force along
troughs and crests, as suggested by observafibd$ so the slope and a coefficient of friction
that we may truncate this Taylor series at first ord4].

Specifically, we require g . g ayl ox
2N U= SI= = T (ayTax) 2172 (12

dN
i 2 <z
ax? (X’t)j a’p(a)da< X (X’t)f ap(ayda - (7) In general is a function of the grain packing and grain size.

In the present work, for simplicity, we seto be constant. In
for this truncation to be valid. In this case, we can simplify practice, rolling may cease to occur on very shallow slopes;
Eq. (6) to the form our model accounts for this in a simple way by assuming that
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(?2

rolling is proportional to the slope, although this may be y ~ 3%y
refined in the future with more experimental observations. 7 (x,t)=D vk (19
The horizontal number fluQ(x,t) of sand grains is propor-
tional to the horizontal speed of rolling, cos, Ahead of the shadow zone, the saltation flux can reach the
surface once more. In our model we interpret the position
g g ayl ox where the shadow zone ends as the trailing edge of the stoss
Q(x,)=—F I sina cose=—F [1+ (ay/ax)?]’ slope of the next ripple. Beyond this point the hopping flux

(13)  can start to build the sand up again.

Since the field observations described in Sec. | suggest
whereF is a constant of proportionality. If the angle of slope that | dy/dx|<tan y=tan 30°, we will assume thawy/dx)?
attempts to exceed, we assume that avalanching sets in,<1. In this approximation, Eq.18) has the form
and the sand flux down the slope becomes very large. We

model this phenomenologically by writing a_y: D tarfy | coB i (20)
ot \[tarfy— (ayldx)?]%? ax?’
Q(x,t)=—F %tanzy where D=Fa,(g/r)tarfy is a constant, and Eq19) be-
comes
ayl ax 5
X , (19 ay D tarfy ) 52y

1+ 2 Py— 2712 9y _

[1+(aylax)<][tarty—(dyl/dx)*] =\ Ty = (a0 o (22)

so that the sand flux becomes infinite_ as the rip_ple slop§yere terms oD(ay/ax)? and higher are neglected, except in
approachest tanvy, but also agrees with expressigh3) the factor[tarfy— (ay/x)2]¥2 where both terms are of the

when the slopes are small. The evolution of the surface Prosame order of magnitude.

f!le depends on the surface sand flux according to the equa- \yg oy investigate solutions of this model, first consid-
tion ering a horizontal saltation flux, and then extending the

analysis to include inclined saltation fluxes.
ay aQ
—=—a, —, (15
ot X Il. ISOLATED TRAVELING RIPPLE

where once agaiap is the mean size of a sand grain_ Com- We will consider the Simple model situation in which the
bining Egs.(14) and(15), we see that the variation in eleva- saltation flux is horizontalj.e., 8=0). Since the lee slope is

tion at any poinb( on the ripp'e, due to the process of ro”ing, Comp|ete|y shielded from the horizontal saltation ﬂUX, this
is given by ripple is isolated. If the hopping due to saltation, which

builds up the stoss slope of the ripple, can overcome the

2 rolling of the particles under gravity, which tends to smooth

J ~ d
0—{=D a_x)é’ (16)  out surface irregularities, i.el>D, then a ripple will de-
velop [Eq. (189)].
where Our model can describe ripples of fixed shape that propa-
gate steadily in the direction of the saltating flux. The shape
g 1— (aylax)? of the ripple that develops depends upon the intensity of the

2 >0. saltating flux, and the size of the ripple. The stoss face is
r [1+(ay/ox)? ] tarty— (ayl 9x)*]" built up by saltation until the slope becomes so steep that
rolling or avalanching downslope prevents further increase.
This happens when the diffusion coefficient in E0) is

C. The combined model zero. We then find the shape of the lee slope of the ripple by

. . ) conservation of sand flux at the ripple crest.
If we combine the effects of hopping, EQ.1), and either As the saltating flux increases, there will be a larger flux

rolling, Eq. (16), or avalanching, we may find phenomeno- 4 the crest, and in this case the lee slope at the crest in-
logical equations governing the evolution of the surface ofyrgases in order to allow the sand to roll ahead of the ripple.

D=F(tarfy)a,

the ripple,y(x,t). _ If the lee slope angle reaches the dynamic angle of repose,
. On the stoss_slope, the surface elevation evolves accorqan% then according to our simple model, avalanching sets in
ing to the equation and a slip face develops just ahead of the crest.

ay = 1[coB—sinB(aylx)]| o%y
o XO= PTGy T | ae

(18 The isolated ripple

Using our model equation®0) and (21), we find that a

On the lee slope, there is a region just beyond the rippléipple with shapey(x—ct) propagating at steady speed
crest, which is shielded from the saltation flux. This is called>0 evolves according to the equations
the shadow zone, and no hopping occurs tliErg. 1). In the . .
shadow zone, the surface of the ripple evolves owing to roll- _ 5_y _ D 1 0_y £<0, (22
ing or avalanching according to the equation 0& \[1—(ayla&)?]®? 9E?” :
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0.8
~ FIG. 2. The shapes of some typical ripples as
g predicted by our model. The ripple profile,
. :o . y(&)tany is plotted forD=D/I tany=0.05(solid

curve), 0.20 (dotted curve and 0.40 (dashed
curve. As | increases for fixed and v, the

0 ripples grow larger and develop a slip face.

o
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¢
ay D 9y Combining Egs(27)—(30) we can now determine the con-
T (Y00 98 £>0, (23 stant&, [Eq. (27)] in terms ofD from
where [D2+(1-D¥)3¥2-D
_c(x—cp 24 =(1-D?%)%2 exp(¢,/D—[1+(1- D233 D)3,
I (3D
cy From Eq.(22), we find
Y= Ttany’ @9 : 0
i 1= b ! 7y 32
D o\ Fraa @wen el s %2
D= , (26)
| tany which integrates to give the implicit expression for the gra-
and where the ripple crest is @=0. Note that both the dient of the stoss slope
distance x—ct) along the ripple, and the ripple height ~ D
scale withl/c, so for a given saltation flux intensity, ripples —(E—&)=—(1+ 6)|n(&_y + a—
1 1 - A—,'
of different speeds are self-similar. a§)  [1—(aylaé)”]
The shape of the lee slope is obtained implicitly by inte- +D I{1—[1—(39/98)2]¥2). (39

grating Eq.(23) to give

o Ao A~ - ~o Ao 1) At the crest, the expression on the right-hand side is finite,
(D7+y")™ =D =y exp{~(§~£0)/D ~ (1+y7/D") 2(}27) and this confirms that our model gives a stoss slope of finite
extent. The shape of the stoss slope must be determined by
on the lee slope, wherg, is a constant that we evaluate Numerical integration of Eq22), and is shown in Fig. 2.
below using the boundary conditions that match the lee and Matching the sand flux at the creind hence the ripple
stoss sides of the ripple. Note that-0 asé— + . height there, since the ripple is traveling at constant speed
The stoss slope of the ripple is built up by saltation until it determines the ripple slope on the lee side at the crest. The
is so steep that rolling or avalanching of grains balances outand fluxes on the stoss and lee slopes can be deduced from
the saltation effect. This happens when the effective diffu-Eds.(22) and(23), respectively, and are given by
sion coefficient on the stoss slope is zero, i.e., -

( 0 1 il (stosg (34)
A TA o o212 - SI0Ssg,
D 1 (28) [1-(aylog)*]"* =) o0&
[1- (9106717 ™ .
o . D ay
At this point, the stoss slope ends at the ripple crest, and 1= (351087 7¢ (lee). (35

there we have

3y . Matching the fluxes at the crest we find
=(1-D*9)*2 (29

t?_é 0— _(1_62/3)3/2

ayl
Ty N 2/3, 3 1/2°
- {D*+(1-D“*}

§lo=(1—D2332 (30) ¢

(36)




6866 R. B. HOYLE AND A. W. WOODS 56

We see that as the saltation flux intendity +, the res- (a)
caled rolling coefficienD— 0, and in dimensional form 1o

ay

t %y
X —any. %

. ~ —tany. (37)

0+

0.6 —
In particular, the ripple slope at the crest on the lee side tenc
to the dynamic angle of reposeand we expect that a slip
face will form there.
The height of the ripple varies inversely with the ripple
speed, since in dimensional form EGO) gives o2r

>
=}
©

-
>

¢ =04l

2/3\ 312

D
| tany

0.0l

| tany
C

ylo= (38

We deduce that larger ripples travel more slowly than smal (b)
ripples, at a fixed saltation flux. This naturally causes smal
ripples to catch up and merge into large ripples, as seen i i
Sharp’s field observatiorjg], and the numerical simulations 08~
of Anderson[3] and Landry and Werndi6]. -

Note that according to the model, the intensity of the sal- A0,61
tation flux must exceed a threshold valle; D/tany (D s
<1), for aripple to develop. This is in qualitative agreement 7, ,[_
with the numerical simulations of Nishimori and Oudbil. r
Bagnold[1] also observed that a threshold wind speed is
required for the formation of ripples, but he argued that this
is because sand grains require a certain threshold wind spe
before they can be brought into saltation. Our prediction re. 00—
sults from the assumption that rolling continues on slopes o
very small angle, at a rate proportional to the slope. In prac
tice, rolling may cease or become less efficient at very sma (c)
angles and this might lead to the formation of very small -
ripples of shallow slope; however, further field observations
are necessary to resolve this issue.

The shapes of some typical ripples are shown in Fig. 2
The profiles are very similar to the idealized cross section o _o.6
a wind ripple, shown in Fig. 7 of Shaif@], except that here i
the stoss slope is concave everywhere, while the stoss slo|,
of Sharp’s ripple is convex near the crest. Sharp attribute
this flattening of the ripple crest to the wind. A possible
modification to our model, which might include this effect,
would be a treatment of the entrainment of sand grains fron
the bed by the wind. However, this is beyond the scope o
the present work. Note that the model ripples become large
as the saltation flux intensity increases and decreases
below the critical value of 1. For sufficiently lardea slip FIG. 3. Typical periodic ripple traingy(£)tan y, formed by an
face develops. The slip face is a region of the lee slopénclined saltation flux withD= (a) 0.10, (b) 0.20, (c) 0.30. The
extending down from the crest that is maintained at a condotted line indicates the inclination of the saltation flux.
stant gradient by avalanching; in our model it increases in, _ . _ o
length as increases, since for larger saltation fluxes there igiPPI€- In our model, this position will mark the trailing edge

a greater flux of sand at the crest and this is carried rapidi! the stoss slope of the next ripple. Hence we can extend our
down the ripple by avalanching. isolated ripple solution to model a train of equally sized

ripples propagating steadily with speed

The ripple whose crest is locatedat ct=0 is a modi-
fication of the ripple found in Sec. Ill, with replaced by
| cosp, since the angle of inclination of the saltation fl@x

If the saltation flux is not horizontal, but inclined down- is now nonzero. The stoss and lee slopes of the ripple are
wards, then the shadow zone becomes of finite extent, andrgw of finite extent, and occupy the regions<¢<0 and
periodic train of ripples may develop. At the location on theO<§=I, respectively. Typical periodic ripple trains at vari-
lee slope where the saltation flux once again reaches theus values oD are shown in Fig. 3.
surface, the hopping process begins to build up another The model now requires

0.2

0.8

IV. PERIODIC RIPPLE TRAINS:
INCLINED SALTATION FLUX
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saltating flux the stoss slope is very small. The shadow zone is therefore

\ long in comparison with the lee slope decay length scale, and
\ dominates the ripple wavelength, corroborating Sharp’s ar-
f gument[4] that the ripple wavelength is controlled by the

length of the shadow region. Note also that simply from

stoss lee slip face

one slope beyond orest geometrical considerations, taller ripples have a longer
shadow zone, and hence a longer wavelength. This is in ac-
{note angles are exaggerated for clarity) cord with field observationée.g., CornisH13]), which have

established that sand ripples have aspect ratios in the rela-
tively narrow range 1/15-1/20. Note also that for a fixed
ripple height, as the angle of inclination of the saltation flux
B increases, the wavelengthdecreases, so the ripples be-
come closer together.

Replacingl by | cos8 in Eqg. (38) we find that for the
periodic train the ripple height is related to the speed by

FIG. 4. Diagram of a periodic ripple train, showing the length of
the stoss slopse and of the lee slopk, with the coordinate system
used in the text, and also showing the position of the slip face.

| cog8>D (39

in order for a ripple to develop. Therefore, if the saltation

flux is inclined, it must be more intense than in the horizontal

case 3=0) before ripples will form. Bagnolfl1] observed

that ridges, or isolated ripples, form at lower wind speeds c

than periodic ripples. He attributed this to the difference in

size of the sand grains of which ridges and ripples are comJust as in the case of a horizontal saltation flux, smaller

posed. ripples travel faster than larger ones, providing a mechanism
At some point the lee slope emerges from the shadowor the cascade to progressively larger ripples with time, as

zone. The location at which this happens is giverébyl or ~ shorter ripples catch up with and are incorporated into larger

x—ct=I/c. In our simple model, the lee slope ends whereOnes.

the shadow zone ends; beyond this point the saltating flux

builds up a new ripple. Typically, the point at which the lee V. CONCLUSION

slope emerges from shadow will not be on the slip face, but

on the concave, nearly flat, section of the lee slope, since the In this work, we have formulated a simple phenomeno-

inclination of the saltation flux is usually smaller than the logical model of sand ripple migration based on a balance

2/313/2

(42

1_(I cosB tany

dynamic angle of reposg<y. between grain hopping driven by saltation and rolling or ava-
The lengthl/c of the shadow zone is given by simple lanching under gravity. We have found solutions describing
geometrical consideratior(&ig. 4) and satisfies steadily propagating isolated ripples, produced by a horizon-
tal saltation flux, and periodic trains of ripples, which de-
R | tang< (1— &) velop when the saltation flux is inclined to the horizontal. In
(1—D23)32— W expy, — 5 the case of an inclined saltation flux, we show that the ripple

wavelength is controlled by the length of the shadow zone,

1 i | tang 27112 as sgggested by Shaj). Althoggh very simple, our model
|14 — | (1-D%’)3— _) 1 ] predicts some of the qualitative features shown by sand
D2 tany ripples in experimental or field studi¢s,4].
211/2 Our model incorporates Bagnold[4] observation that
—| D24 (1- 62’3)3’2— | tang _D (40) saltation is responsible for the development of aeolian sand
tany : ripples, and we find that ripples only develop if there is a

sufficiently intense saltating fluxi &D), so that grains can
We see thal can be expressed in terms Df and the ~&ccumulate by hopping under saltation faster than they can
anglesB andy. So for fixedD, I, 8, andy, the length/c of return to their original po_siti_on throggh roIIi_ng under gra\(ity.
the shadow zone varies inversely with the ripple speadd We note, however, that if, in practice, rolling becomes inef-

hence is directly proportional to the ripple height, so thatfective on slopes of very small angle, th.en very small ripples
taller ripples have longer shadow zones. may still develop as a result of saltation. Our model also

At x—ct=I, another ripple starts to grow. If the ripples predicts that at relatively low saltation fluxes, the lee slope of
are periodic, so that they are the same shape and all have tH "PPI€ is @ smooth curve, but that as the saltation flux
same amplitude, then the ripple will have its crest at a posilncreases, a slip face develops near the crest.

tion é&=N=I+s, x—ct=(l+s)/c. Continuity of surface el- In contrast to Sharp’§4] conjecture that ripples become
evation and sand flux at=| requires that more symmetric as wind sp_eed increases, our quel rlpples
tend to look more asymmetric as the saltation flux intenisity
y(H=9(—s). (41  increases in the non-slip-face regime. Once a slip face has

developed, however, its length increases with increasing
Since the shape of the stoss slope is found from a numericéading the ripples to become more symmetrical again. Our
integration of Eq(22), this matching must also be performed model is very simple, and it is likely that more complex
numerically. From Fig. 3 we note that since the saltation fluxeffects such as wind entrainment of sand have an effect on
is inclined at a very shallow angle to the horizon&fl—109, ripple symmetry.
the ripple height at the end of the lee slope or beginning of The model predicts a decrease in the speed of propagation
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as the ripple becomes larger, essentially since more time i& which the shape and speed of the ripple are based solely
required for the grains to hop the length of the ripple. This isupon the local dynamical balance between hopping and roll-
consistent with Sharp’s observatipd] that smaller ripples ing or slipping. As described above, our model appears to
are eliminated by ripple merger, and with Andersdi@kand  capture many of the qualitative aspects of the motion of aeo-
Landry and Werner'$6] numerical simulations where small lian sand ripples. However, in some real situations, other
ripples catch up with and may become incorporated inteeffects may also be important in determining the shape and
larger, slower moving ripples. size of ripples. These include the effects of multiple grain
For periodic trains of equally sized, steadily propagatingsizes, which may lead to more complex hopping phenomena
ripples, the model predicts that larger, slower moving wave$15], and the effects of the deposition and entrainment of
will have longer wavelengths in accordance with observatiorgrains by wind, which is responsible for the formation of the
[13]. In addition we find that the spacing between the wavesaltation flux. In particular, it would be interesting to couple
decreases as the impact angle of the saltation flux increasdbe present model with a model of the generation of the
In our model we have only considered a simple situationsaltation flux by wind entrainment.
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