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Analytical model of propagating sand ripples
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We formulate a simple phenomenological model of aeolian sand ripple migration based upon a balance
between grain hopping driven by saltation and grain rolling or avalanching under gravity. We develop a set of
model equations governing the evolution of the ripple slope. The model has solutions describing steadily
propagating isolated ripples, produced by a horizontal saltation flux, and periodic trains of ripples, which
develop when the saltation flux is inclined to the horizontal. In the case of an inclined saltation flux, the ripple
wavelength is controlled by the length of the shadow zone, as suggested by R. P. Sharp@J. Geol.71, 617
~1963!#. Although very simple, our model predicts some of the qualitative features shown by sand ripples in
experimental or field studies@R. A. Bagnold,The Physics of Blown Sand and Desert Dunes~Methuen and Co.,
London, 1941!; R. P. Sharp, J. Geol.71, 617 ~1963!#. We find that ripples only develop above a certain
threshold value of the saltation flux intensity. Furthermore, at relatively low saltation fluxes, the lee slope of the
ripple is a smooth curve, whereas above a critical value of the saltation flux, a slip face develops near the crest.
The model predicts a decrease in the speed of propagation as the ripple becomes larger, consistent with
observations that smaller ripples are eliminated by ripple merger@R. P. Sharp, J. Geol.71, 617 ~1963!#, and
also with numerical simulations@R. S. Anderson, Earth-Sci. Rev.29, 77 ~1990!; S. B. Forrest and P. K. Haff,
Science255, 1240~1992!; W. Landry and B. T. Werner, Physica D77, 238 ~1994!#.
@S1063-651X~97!05911-4#

PACS number~s!: 81.05.Rm
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I. INTRODUCTION

As the wind blows across a loosely packed sand bed,
sand tends to be organised into propagating waves know
aeolian sand ripples. These ripples, which occur both in
desert and at the seashore, are small, with a wavelength
few centimetres, and with heights roughly one-fifteenth
one-twentieth of their wavelength. Their crests lie perp
dicular to the direction of the wind.

Bagnold@1# presented a model of the formation of aeoli
561063-651X/97/56~6!/6861~8!/$10.00
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sand ripples based upon the concept of energetic salta
grains impacting the ripple and causing displacement of
grains in the ripple. The displaced grains then hop up
stoss~windward! slope of the ripple, and it is this that cause
the ripple to propagate. The saltating grains are assume
be entrained from the sand bed upwind and to be sufficien
energetic that they continue downwind of the ripple. Th
saltation process is illustrated in Fig. 1, which also show
typical aeolian sand ripple and explains the terminology us
to refer to different parts of the ripple. Bagnold’s early wo
on sand ripple formation has been developed and modi
by subsequent workers, e.g., Anderson@2,3#, and compared
s,

l

f

FIG. 1. A schematic diagram
to show the stoss and lee slope
the ripple crest, and the shadow
zone. The saltating particles trave
in the direction of the wind and
impact the bed at an anglea. The
impacting grain rebounds, and
knocks several other grains out o
the bed, causing them to hop
along the surface.
6861 © 1997 The American Physical Society
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with field observations, for example, Sharp@4#, and numeri-
cal experiments, for example, Anderson@3#, Nishimori and
Ouchi @5#, and Landry and Werner@6#.

Much recent analytical and experimental work has
cused on the microscopic details of grain migration along
ripple. The hopping of the displaced grains has been stu
by Ungar & Haff @7#, Mitha et al. @8# and Anderson@2#.
Anderson@2# used this information to produce a theoretic
model of the initial generation of ripples from a flat bed. T
deposition of sand grains on the lee slope of sand du
which leads to oversteepening and avalanching, was stu
by Hunter@9# and Anderson@10#. This work suggests con
straints on the ripple slope.

Both Bagnold@1# and Sharp@4# made field observation
of sand ripple motion and interaction. Sharp@4# found that
the stoss slope angle has a maximum inclination in the ra
8° – 10°, which does not vary significantly with ripple siz
This is in accord with the theoretical prediction@11# that the
process of saltation becomes energetically inefficient if
angle of impact exceeds 15°. Rumpel@11# predicted that it is
impossible to maintain a constant population of saltat
grains when the surface is tilted by more than 15° against
incoming sand flux. He suggested that the stoss face is
up by saltation until it is at an angle of 15° to the incomi
flux, when saltation becomes subdued. This suggests th
the saltation flux is at an angleb to the horizontal, then the
maximum steepening of the stoss face is 15°2b. Bagnold
@1# observed that the lee slope never exceeds an initial a
of about 34°. This is in accord with theoretical work showi
that the deposition of grains on the lee slope of sand du
leads to oversteepening and avalanching@9,10#. Avalanching
maintains the lee slope at an angle of around 32°–34°@12#
near the ripple crest. Aeolian sand ripples show a sim
feature: Sharp@4# observed that the lee slope of a sand rip
is composed of a short straight slope near the crest, incl
at an angle of about 30° to the horizontal, followed by
longer and shallower, concave slope.

Other field observations suggest that ripple wavelen
tends to increase with time by ripple merger@4#, and that
longer waves are taller@13,4#. Sharp argued that the rippl
wavelength is determined by the length of its shadow zo
that is, the region of the lee slope that is shielded from
saltation flux by the ripple crest. He also suggested t
larger ripples would move more slowly than small ones. F
thermore, he conjectured that at low wind speeds, the s
slope would be much longer than the lee, but that increas
wind speed should lead to a greater degree of symmetry

In recent numerical experiments, Anderson@3#, Forrest
and Haff@14#, and Landry and Werner@6# have investigated
the macroscopic motion of sand ripples by computer simu
tion, in which individual grains are followed as they intera
with each other. Some of the numerical results show sim
features to the observations described above. In partic
ripple speed is found to vary inversely with height, so th
small ripples catch up with larger ones and merge into th
This is consistent with Sharp’s observation that sma
ripples are eliminated by merger. Nishimori and Ouchi@5#
use a similar technique to investigate both small and la
scale features in three dimensions, and produce convin
contour plots of simulated sand ripples and barchan du
They also find a threshold wind force for the developmen
-
e
ed

l

s,
ed

ge

e

g
e
ilt

t if

le

es

r

ed

h

e,
e
at
-
ss
g

-
t
r
r,

t
.

r

e
ng
s.
f

ripples. Anderson and Bunas@15# investigated the effects o
different grain sizes numerically using a cellular autom
approach. They found that the differential motion of sm
and large grains can lead to reverse grading in the ripple

The purpose of the present contribution is to develop
framework within which analytical models of the macr
scopic motion of sand ripples may be developed, followi
the work of Anderson@2#. The current work is an extensio
of Hoyle @16#. We develop some simple phenomenologic
models of saltation, hopping, rolling, and avalanching, wh
account for the observations described above, and cons
how a combination of these processes might determine rip
shape and migration. We derive a set of model equati
governing the evolution of the ripple slope. The theory e
ables us to predict some qualitative changes in the struc
of the ripples with size and strength of the saltation flu
First we consider a horizontal saltating flux, and present
lutions that describe isolated ripples. Next, we allow the s
tation flux to be inclined to the horizontal, and predict th
this leads to the formation of a periodic train of ripples. W
show that in our model, as the intensity of the saltation
creases, the lee face of the ripple steepens and event
develops a slip face. This provides a natural distinction
tween subcritical ripples characterized by a smooth, curv
lee slope, and supercritical ripples, which include a slip fa
on the lee slope.

II. PROCESSES GOVERNING SAND RIPPLE
DEVELOPMENT

A. Hopping

Aeolian sand ripples are formed by the action of saltat
sand grains on surface roughness. In saltation, grains
whipped along the surface of the sand bed by the wind,
pacting the bed at small angles to the surface, typically 1
16° @1#, and with high speed~of order <1 m/s, @15#!. De-
spite the gusting of the wind, the impact angle appears
remain fairly constant. The saltating grains rebound
slightly higher angles, but still with high speed, and it
assumed for the purposes of this model that these grains
sufficiently energetic that they do not fall onto the ripp
surface, but continue in saltation. The impacts lead to
ejection of sand grains from the bed. The ejected gra
which have much lower speeds than the saltating grains,
along the surface of the ripple; they are said to be in ‘‘re
tation’’ @8#. Typically, the distance a reptating particle ho
is much less than one ripple wavelength@1#, and recent mod-
eling suggests therefore that reptating particles have an
portant role in ripple formation.

For simplicity we restrict our attention to two
dimensional ripples whose surface remains of small incli
tion, no greater than 34°, consistent with observations@1,4#.
Also, we assume that the number,N(x,t), of sand grains
ejected per unit time, per unit surface length, from the s
face at a positionx along the ripple, at timet, is proportional
to the flux of saltating grains perpendicular to the surface
that point:

N~x,t !5J sin~a1b!, ~1!

wherea is the slope of the surface,b is the angle of impact
that the saltation flux makes with the horizontal, andJ is a
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constant of proportionality. We assume that each sand g
ejected from the surface hops a horizontal distancea, with
probability p(a), where

E
2`

`

p~a!da51, ~2!

and define the mean hop lengthā, as

ā5E
2`

`

ap~a!da. ~3!

We shall assume thatā.0. Thus the net displacement of th
sand is in the direction of the saltating flux, in accordan
with observations. The probability distributionp(a) contains
all the information about the transfer of momentum from t
saltating particles to the reptating particles. In practice,
must be determined experimentally. For example, Ungar
Haff @7# described the variation in hop lengths using
‘‘splash’’ function, and Mithaet al. @8# measured the distri
bution of hop lengths for a bed of steel ball bearings. In
present analysis, we therefore assume thatp(a) is known.

Then the net numberdn(x,t) of sand grains arriving be
tween positionsx and x1dx, in time dt, is the difference
between the number hopping in and the number hopping

dn~x,t !5H 2E
2`

`

p~a!@N~x,t !2N~x2a,t !#daJ dxdt.

~4!

The changedy in the surface elevationy(x,t) in time dt, is
given in terms of the change in the cross-sectional area o
ripple by

dxdy~x,t !5apdn~x,t !, ~5!

whereap is the average cross-sectional area occupied b
sand grain in the ripple. Combining the last two equatio
leads to an equation for the evolution of the surface ele
tion,

]y

]t
~x,t !52apE

2`

`

p~a!@N~x,t !2N~x2a,t !#da. ~6!

We now introduce a number of approximations that simp
the analysis and that are generally valid for sand ripp
Typically, the hop length is short compared to a wavelen
@1#, so we can expand the integrand in Eq.~6! as a Taylor
series ina. We also assume that the slope of the ripple, a
hence the gradientN(x,t), varies slowly, except at the
troughs and crests, as suggested by observations@1,4#, so
that we may truncate this Taylor series at first order@3,14#.
Specifically, we require

]2N

]x2 ~x,t !E a2p~a!da!
]N

]x
~x,t !E ap~a!da ~7!

for this truncation to be valid. In this case, we can simpl
Eq. ~6! to the form
in
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]y

]t
~x,t !52apE ap~a!

]N

]x
~x,t !da52apā

]N

]x
~x,t !.

~8!

Noting that the angle of slope of the surface,a, may be
expressed as

a5tan21~]y/]x!, ~9!

we may rewrite the definition~1! in the form

N~x,t !5J sin~a1b!5J sin$tan21~]y/]x!1b%

5
J$~]y/]x!cosb1sinb%

@11~]y/]x!2#1/2 . ~10!

We may combine this with Eq.~8! to obtain the equation

]y

]t
52I

]2y

]x2

@cosb2sinb~]y/]x!#

@11~]y/]x!2#3/2 , ~11!

where I 5Japā. Equation ~11! describes the leading-orde
contribution to the evolution of the shape of the ripple fro
the hopping caused by the saltating particles in the abse
of other processes. In the next section, we build upon
picture by including the rolling of the grains under gravity

B. Rolling

We now incorporate the effect of rolling or avalanchin
of the sand grains under the influence of gravity. Partic
tend to roll down a slope under the influence of gravity b
anced by friction@1#. This results in the smoothing of th
ripple profile. For a static sand pile, there is an angle
surface slope, known as the angle of repose, which is
maximum that the sand can support before avalanching
curs. The angle of repose depends on the packing of the
grains, and for dry sand, the angle of repose is about
@17#. We assume that for traveling sand ripples, there is
angleg that is no greater than the angle of repose, and
gives the maximum slope attainable during motion. We w
call g the dynamic angle of repose. If the lee slope increa
to the angleg, then a slip face will develop, on which san
avalanches rather than rolls down the lee slope. This pic
is in accord with Bagnold’s@1# observation that sand dune
over a certain height have a slip face on the lee slope,
also with Sharp’s observation@4# that, near the crest, the le
slopes of sand ripples are straight and inclined roughly at
angle of repose. The slip face is a region extending do
from the crest that is maintained at a constant slopeg by
avalanching.

As a simple phenomenological model, we assume that
slopes of angle less thang the grains roll on the surface with
speedu, which is a function of the gravitational force alon
the slope and a coefficient of frictionr ,

u52
g

r
sina52

g

r

]y/]x

@11~]y/]x!2#1/2. ~12!

In generalr is a function of the grain packing and grain siz
In the present work, for simplicity, we setr to be constant. In
practice, rolling may cease to occur on very shallow slop
our model accounts for this in a simple way by assuming t
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rolling is proportional to the slope, although this may
refined in the future with more experimental observatio
The horizontal number fluxQ(x,t) of sand grains is propor
tional to the horizontal speed of rolling,u cosa,

Q~x,t !52F
g

r
sina cosa52F

g

r

]y/]x

@11~]y/]x!2#
,

~13!

whereF is a constant of proportionality. If the angle of slop
attempts to exceedg, we assume that avalanching sets
and the sand flux down the slope becomes very large.
model this phenomenologically by writing

Q~x,t !52F
g

r
tan2g

3
]y/]x

@11~]y/]x!2#@ tan2g2~]y/]x!2#1/2, ~14!

so that the sand flux becomes infinite as the ripple sl
approaches6 tang, but also agrees with expression~13!
when the slopes are small. The evolution of the surface p
file depends on the surface sand flux according to the e
tion

]y

]t
52ap

]Q

]x
, ~15!

where once againap is the mean size of a sand grain. Com
bining Eqs.~14! and~15!, we see that the variation in eleva
tion at any pointx on the ripple, due to the process of rollin
is given by

]y

]t
5D̃

]2y

]x2 , ~16!

where

D̂5F~ tan4g!ap

g

r

12~]y/]x!2

@11~]y/]x!2#2@ tan2g2~]y/]x!2#1/2.0.

~17!

C. The combined model

If we combine the effects of hopping, Eq.~11!, and either
rolling, Eq. ~16!, or avalanching, we may find phenomen
logical equations governing the evolution of the surface
the ripple,y(x,t).

On the stoss slope, the surface elevation evolves acc
ing to the equation

]y

]t
~x,t !5S D̃2

I @cosb2sinb~]y/]x!#

@11~]y/]x!2#3/2 D ]2y

]x2 . ~18!

On the lee slope, there is a region just beyond the rip
crest, which is shielded from the saltation flux. This is cal
the shadow zone, and no hopping occurs there~Fig. 1!. In the
shadow zone, the surface of the ripple evolves owing to r
ing or avalanching according to the equation
.

,
e

e
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f
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le
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]y

]t
~x,t !5D̃

]2y

]x2 . ~19!

Ahead of the shadow zone, the saltation flux can reach
surface once more. In our model we interpret the posit
where the shadow zone ends as the trailing edge of the s
slope of the next ripple. Beyond this point the hopping fl
can start to build the sand up again.

Since the field observations described in Sec. I sugg
that u]y/]xu<tang.tan 30°, we will assume that (]y/]x)2

!1. In this approximation, Eq.~18! has the form

]y

]t
5S D tan2g

@ tan2g2~]y/]x!2#3/22I cosb D ]2y

]x2 , ~20!

where D5Fap(g/r )tan2g is a constant, and Eq.~19! be-
comes

]y

]t
5S D tan2g

@ tan2g2~]y/]x!2#3/2D ]2y

]x2 . ~21!

Here terms ofO(]y/]x)2 and higher are neglected, except
the factor@ tan2g2(]y/]x)2#1/2, where both terms are of th
same order of magnitude.

We now investigate solutions of this model, first cons
ering a horizontal saltation flux, and then extending t
analysis to include inclined saltation fluxes.

III. ISOLATED TRAVELING RIPPLE

We will consider the simple model situation in which th
saltation flux is horizontal,~i.e.,b50!. Since the lee slope is
completely shielded from the horizontal saltation flux, th
ripple is isolated. If the hopping due to saltation, whi
builds up the stoss slope of the ripple, can overcome
rolling of the particles under gravity, which tends to smoo
out surface irregularities, i.e.,I .D, then a ripple will de-
velop @Eq. ~18!#.

Our model can describe ripples of fixed shape that pro
gate steadily in the direction of the saltating flux. The sha
of the ripple that develops depends upon the intensity of
saltating flux, and the size of the ripple. The stoss face
built up by saltation until the slope becomes so steep
rolling or avalanching downslope prevents further increa
This happens when the diffusion coefficient in Eq.~20! is
zero. We then find the shape of the lee slope of the ripple
conservation of sand flux at the ripple crest.

As the saltating flux increases, there will be a larger fl
at the crest, and in this case the lee slope at the cres
creases in order to allow the sand to roll ahead of the rip
If the lee slope angle reaches the dynamic angle of rep
tang, then according to our simple model, avalanching set
and a slip face develops just ahead of the crest.

The isolated ripple

Using our model equations~20! and ~21!, we find that a
ripple with shapey(x2ct) propagating at steady speedc
.0 evolves according to the equations

2
] ŷ

]j
5S D̂

@12~] ŷ/]j!2#3/221D ] ŷ

]j2 , j,0, ~22!
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FIG. 2. The shapes of some typical ripples
predicted by our model. The ripple profile
ŷ(j)tang is plotted forD̂[D/I tang50.05~solid
curve!, 0.20 ~dotted curve! and 0.40 ~dashed
curve!. As I increases for fixedD and g, the
ripples grow larger and develop a slip face.
s

te

te
an

l i
o
fu

an

-

ra-

ite,
nite
d by

ed
The
from
2
] ŷ
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D̂

@12~] ŷ/]j!2#3/2

] ŷ

]j2 , j.0, ~23!

where

j5
c~x2ct!

I
, ~24!

ŷ5
cy

I tang
, ~25!

D̂5
D

I tang
, ~26!

and where the ripple crest is atj50. Note that both the
distance (x2ct) along the ripple, and the ripple heighty
scale withI /c, so for a given saltation flux intensity, ripple
of different speeds are self-similar.

The shape of the lee slope is obtained implicitly by in
grating Eq.~23! to give

~D̂21 ŷ2!1/22D̂5 ŷ exp$2~j2j0!/D̂2~11 ŷ2/D̂2!1/2%
~27!

on the lee slope, wherej0 is a constant that we evalua
below using the boundary conditions that match the lee
stoss sides of the ripple. Note thaty→0 asj→1`.

The stoss slope of the ripple is built up by saltation unti
is so steep that rolling or avalanching of grains balances
the saltation effect. This happens when the effective dif
sion coefficient on the stoss slope is zero, i.e.,

D̂

@12~] ŷ/]j!2#3/251. ~28!

At this point, the stoss slope ends at the ripple crest,
there we have

] ŷ

]jU
02

5~12D̂2/3!1/2, ~29!

ŷu05~12D̂2/3!3/2. ~30!
-

d

t
ut
-

d

Combining Eqs.~27!–~30! we can now determine the con
stantj0 @Eq. ~27!# in terms ofD̂ from

@D̂21~12D̂2/3!3#1/22D̂

5~12D̂2/3!3/2 exp$j0 /D̂2@11~12D̂2/3!3/D̂2#1/2%.
~31!

From Eq.~22!, we find

215S D̂

] ŷ/]j@12~] ŷ/]j!2#3/22
1

] ŷ/]j
D ]2ŷ

]j2 , ~32!

which integrates to give the implicit expression for the g
dient of the stoss slope

2~j2j0!52~11D̂ !lnS ] ŷ

]j D1
D̂

@12~] ŷ/]j!2#1/2

1D̂ ln$12@12~] ŷ/]j!2#1/2%. ~33!

At the crest, the expression on the right-hand side is fin
and this confirms that our model gives a stoss slope of fi
extent. The shape of the stoss slope must be determine
numerical integration of Eq.~22!, and is shown in Fig. 2.

Matching the sand flux at the crest~and hence the ripple
height there, since the ripple is traveling at constant spe!
determines the ripple slope on the lee side at the crest.
sand fluxes on the stoss and lee slopes can be deduced
Eqs.~22! and ~23!, respectively, and are given by

S D̂

@12~] ŷ/]j!2#1/221D ] ŷ

]j
~stoss!, ~34!

S D̂

@12~] ŷ/]j!2#1/2D ] ŷ

]j
~ lee!. ~35!

Matching the fluxes at the crest we find

] ŷ

]j
U

01

5
2~12D̂2/3!3/2

$D̂21~12D̂2/3!3%1/2
. ~36!
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We see that as the saltation flux intensityI→1`, the res-
caled rolling coefficientD̂→0, and in dimensional form

]y

]xU
02

→tang,
]y

]xU
01

→2tang. ~37!

In particular, the ripple slope at the crest on the lee side te
to the dynamic angle of reposeg and we expect that a slip
face will form there.

The height of the ripple varies inversely with the ripp
speed, since in dimensional form Eq.~30! gives

yu05
I tang

c S 12S D

I tang D 2/3D 3/2

. ~38!

We deduce that larger ripples travel more slowly than sm
ripples, at a fixed saltation flux. This naturally causes sm
ripples to catch up and merge into large ripples, as see
Sharp’s field observations@4#, and the numerical simulation
of Anderson@3# and Landry and Werner@6#.

Note that according to the model, the intensity of the s
tation flux must exceed a threshold value,I .D/tang (D̂
,1), for a ripple to develop. This is in qualitative agreeme
with the numerical simulations of Nishimori and Ouchi@5#.
Bagnold @1# also observed that a threshold wind speed
required for the formation of ripples, but he argued that t
is because sand grains require a certain threshold wind s
before they can be brought into saltation. Our prediction
sults from the assumption that rolling continues on slopes
very small angle, at a rate proportional to the slope. In pr
tice, rolling may cease or become less efficient at very sm
angles and this might lead to the formation of very sm
ripples of shallow slope; however, further field observatio
are necessary to resolve this issue.

The shapes of some typical ripples are shown in Fig
The profiles are very similar to the idealized cross section
a wind ripple, shown in Fig. 7 of Sharp@4#, except that here
the stoss slope is concave everywhere, while the stoss s
of Sharp’s ripple is convex near the crest. Sharp attribu
this flattening of the ripple crest to the wind. A possib
modification to our model, which might include this effec
would be a treatment of the entrainment of sand grains fr
the bed by the wind. However, this is beyond the scope
the present work. Note that the model ripples become la
as the saltation flux intensityI increases andD̂ decreases
below the critical value of 1. For sufficiently largeI a slip
face develops. The slip face is a region of the lee slo
extending down from the crest that is maintained at a c
stant gradient by avalanching; in our model it increases
length asI increases, since for larger saltation fluxes there
a greater flux of sand at the crest and this is carried rap
down the ripple by avalanching.

IV. PERIODIC RIPPLE TRAINS:
INCLINED SALTATION FLUX

If the saltation flux is not horizontal, but inclined down
wards, then the shadow zone becomes of finite extent, a
periodic train of ripples may develop. At the location on t
lee slope where the saltation flux once again reaches
surface, the hopping process begins to build up ano
ds
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ripple. In our model, this position will mark the trailing edg
of the stoss slope of the next ripple. Hence we can extend
isolated ripple solution to model a train of equally siz
ripples propagating steadily with speedc.

The ripple whose crest is located atx2ct50 is a modi-
fication of the ripple found in Sec. III, withI replaced by
I cosb, since the angle of inclination of the saltation fluxb
is now nonzero. The stoss and lee slopes of the ripple
now of finite extent, and occupy the regions2s<j<0 and
0<j< l , respectively. Typical periodic ripple trains at var
ous values ofD̂ are shown in Fig. 3.

The model now requires

FIG. 3. Typical periodic ripple trains,ŷ(j)tang, formed by an
inclined saltation flux withD̂5 ~a! 0.10, ~b! 0.20, ~c! 0.30. The
dotted line indicates the inclination of the saltation flux.
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I cosb.D ~39!

in order for a ripple to develop. Therefore, if the saltati
flux is inclined, it must be more intense than in the horizon
case (b50) before ripples will form. Bagnold@1# observed
that ridges, or isolated ripples, form at lower wind spee
than periodic ripples. He attributed this to the difference
size of the sand grains of which ridges and ripples are c
posed.

At some point the lee slope emerges from the shad
zone. The location at which this happens is given byj5 l or
x2ct5 l /c. In our simple model, the lee slope ends whe
the shadow zone ends; beyond this point the saltating
builds up a new ripple. Typically, the point at which the l
slope emerges from shadow will not be on the slip face,
on the concave, nearly flat, section of the lee slope, since
inclination of the saltation flux is usually smaller than t
dynamic angle of repose,b,g.

The lengthl /c of the shadow zone is given by simp
geometrical considerations~Fig. 4! and satisfies

S ~12D̂2/3!3/22
l tanb,

tang
D expH 2

~ l 2j0!

D̂

2F11
1

D̂2 S ~12D̂2/3!3/22
l tanb

tang
D 2G 1/2J

5F D̂21S ~12D̂2/3!3/22
l tanb

tang
D 2G 1/2

2D̂. ~40!

We see thatl can be expressed in terms ofD̂ and the
anglesb andg. So for fixedD, I , b, andg, the lengthl /c of
the shadow zone varies inversely with the ripple speedc and
hence is directly proportional to the ripple height, so th
taller ripples have longer shadow zones.

At x2ct5 l , another ripple starts to grow. If the ripple
are periodic, so that they are the same shape and all hav
same amplitude, then the ripple will have its crest at a po
tion j5l5 l 1s, x2ct5( l 1s)/c. Continuity of surface el-
evation and sand flux atj5 l requires that

ŷ~ l !5 ŷ~2s!. ~41!

Since the shape of the stoss slope is found from a nume
integration of Eq.~22!, this matching must also be performe
numerically. From Fig. 3 we note that since the saltation fl
is inclined at a very shallow angle to the horizontal~5°–10°!,
the ripple height at the end of the lee slope or beginning

FIG. 4. Diagram of a periodic ripple train, showing the length
the stoss slopes and of the lee slopel , with the coordinate system
used in the text, and also showing the position of the slip face.
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the stoss slope is very small. The shadow zone is there
long in comparison with the lee slope decay length scale,
dominates the ripple wavelength, corroborating Sharp’s
gument@4# that the ripple wavelength is controlled by th
length of the shadow region. Note also that simply fro
geometrical considerations, taller ripples have a lon
shadow zone, and hence a longer wavelength. This is in
cord with field observations~e.g., Cornish@13#!, which have
established that sand ripples have aspect ratios in the
tively narrow range 1/15– 1/20. Note also that for a fix
ripple height, as the angle of inclination of the saltation fl
b increases, the wavelengthl decreases, so the ripples b
come closer together.

ReplacingI by I cosb in Eq. ~38! we find that for the
periodic train the ripple height is related to the speed by

yu05
I cosb tang

c F12S D

I cosb tang D 2/3G3/2

. ~42!

Just as in the case of a horizontal saltation flux, sma
ripples travel faster than larger ones, providing a mechan
for the cascade to progressively larger ripples with time,
shorter ripples catch up with and are incorporated into lar
ones.

V. CONCLUSION

In this work, we have formulated a simple phenomen
logical model of sand ripple migration based on a balan
between grain hopping driven by saltation and rolling or a
lanching under gravity. We have found solutions describ
steadily propagating isolated ripples, produced by a horiz
tal saltation flux, and periodic trains of ripples, which d
velop when the saltation flux is inclined to the horizontal.
the case of an inclined saltation flux, we show that the rip
wavelength is controlled by the length of the shadow zo
as suggested by Sharp@4#. Although very simple, our mode
predicts some of the qualitative features shown by s
ripples in experimental or field studies@1,4#.

Our model incorporates Bagnold’s@1# observation that
saltation is responsible for the development of aeolian s
ripples, and we find that ripples only develop if there is
sufficiently intense saltating flux (I .D), so that grains can
accumulate by hopping under saltation faster than they
return to their original position through rolling under gravit
We note, however, that if, in practice, rolling becomes in
fective on slopes of very small angle, then very small ripp
may still develop as a result of saltation. Our model a
predicts that at relatively low saltation fluxes, the lee slope
the ripple is a smooth curve, but that as the saltation fl
increases, a slip face develops near the crest.

In contrast to Sharp’s@4# conjecture that ripples becom
more symmetric as wind speed increases, our model rip
tend to look more asymmetric as the saltation flux intensitI
increases in the non-slip-face regime. Once a slip face
developed, however, its length increases with increasinI
leading the ripples to become more symmetrical again. O
model is very simple, and it is likely that more comple
effects such as wind entrainment of sand have an effec
ripple symmetry.

The model predicts a decrease in the speed of propaga
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as the ripple becomes larger, essentially since more tim
required for the grains to hop the length of the ripple. This
consistent with Sharp’s observation@4# that smaller ripples
are eliminated by ripple merger, and with Anderson’s@3# and
Landry and Werner’s@6# numerical simulations where sma
ripples catch up with and may become incorporated i
larger, slower moving ripples.

For periodic trains of equally sized, steadily propagat
ripples, the model predicts that larger, slower moving wa
will have longer wavelengths in accordance with observat
@13#. In addition we find that the spacing between the wa
decreases as the impact angle of the saltation flux increa

In our model we have only considered a simple situat
e

a

is
s

o

g
s
n
s
es.
n

in which the shape and speed of the ripple are based so
upon the local dynamical balance between hopping and r
ing or slipping. As described above, our model appears
capture many of the qualitative aspects of the motion of a
lian sand ripples. However, in some real situations, ot
effects may also be important in determining the shape
size of ripples. These include the effects of multiple gra
sizes, which may lead to more complex hopping phenom
@15#, and the effects of the deposition and entrainment
grains by wind, which is responsible for the formation of t
saltation flux. In particular, it would be interesting to coup
the present model with a model of the generation of
saltation flux by wind entrainment.
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